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1. Introduction

Although Bayesian statistical analysis has many advantages, a number of objections was made to it
because its prior-dependency. As pointed out by Akaike (1983), in practical applications of Bayesian analy-
sis the available prior information is not usually sufficient to completely specify the prior distribution. Ulti-
mately, the traditional Bayesian inference often depends on objective priors. This may be a standard objec-
tion to the Bayesian approach.

Such problem was emphasized at the early stage of development of Bayesian approach. The pioneers in
the accomplishment of Bayesian analysis such as Bayes (see Bayes 1763) and Laplace (see Laplace 1812)
developed Bayesian procedure using uniform prior distribution for objectivity. However, sometimes such
procedure encounters difficulties because of a lack of invariance under transformation of unknown param-
eters (see Jaynes 1983). Fisher did not accept Bayesian procedure mainly due to the use of uniform prior
distribution, he attempted to make statistical inference by proposing the concept of inverse probability and
his fiducial approach (see Fisher 1930, 1933, and 1935). Fisher's fiducial approach aimed to achieve
advantages of the Bayesian approach without the assumption of a prior distribution. Unfortunately,
Fisher's fiducial approach ultimately cannot be achieved as a systematized methodology for statistical inference.

The main concern with the use of uniform prior distribution is that it may be variant under a
transformation of unknown parameters. This caused Jeffreys to develop his ignorance prior distribution (see
Jeffreys 1946). The definition of Jeffreys prior is based on the concept of invariance of the distribution by a
transformation of unknown parameters. Lindley (1956) applied Shannon entropy to introduce an informa-
tion-theoretic analysis of the structure of Bayesian modeling. Zellner (1971, 1977) and Bernardo (1979)
developed objective Bayesian procedures using the maximal data information prior distribution and the
reference prior distribution respectively. These works prompted the work by Akaike (1983) on the problem
of specifying a prior distribution over a finite number of data distributions.

Another problem in practical applications of objective Bayesian procedures is that they often utilize
improper prior distributions, and so do not automatically have desirable Bayesian properties, such as coher-

ency (see Stone 1976). Also, a poor choice of improper priors can even lead to marginalization paradoxes
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(see Dawid, Stone and Zidek 1973) and improper posteriors (see Ye and Berger 1991). Thus recent studies
of objective Bayesian procedures are mostly about to ensure that such problems do not arise (see Berger and
Bernardo 1992, Bernardo 1999).

In this paper, we attempt to contribute to objective Bayesian theory by developing a new approach
called prior-free inference. This paper is organized as follows. In the next section we give procedural and
mathematical background and motivation of presént study. In Section 3 we show results obtained from
information-theoretic optimization, and in Section 4 a procedure for this approach is given. Finally, conclud-

ing remarks are given in Section 5.

2. Procedural and mathematical background and motivation
2.1 Procedural and mathematical Background -

In the present paper, we are concerned with statistical inference for a k-dimensional vector,
9=(9,,92,...,9k )t, of continuous parameters based on a sample, X(l : n) = {X[,Xz,...,Xn}, of size
n (> k) with each X, being univariate continuous random variable. Generally, we assume a model density
Ixa: n)(x(l : n)lG) for X (1 : n) given 6. Then, the conditional model density for X, given x(l i 1) and
@' is obtained as

i (xfaf1 - 1),8) =20l 00)
frai- 1)(x(1: i— 1)]9)
for i=23,..., k, where fX(l;;)(x(l : i)|9) is given by

Q)

fX(l;i)(x(l :1)0) = fo(l;n)(x(lz n)0)dx(i +1:n).

If we define X(l : 0) =x (1 : O) = ¢, the empty sef, and fx(1:o)(x (1 : O)‘B) =1, then equation (1) holds also

fori=1,1.¢e.

 frasn(x(1: 1)) i
= oo )

Thus, the model density for X (1 'k ) given 0 can be expressed as follows:

le(xl lx(l : 0),9)

Sz (x(1:£))8) = £, (x]0) fiea (xafx(1:1), 0} S, (3, [x(1:K ~1),6). @

).

For the sake of further discussion, we introduce the definition of “support. The concept of support can

Incidentally, when X(l : n) is a random sample, we have fX,.(x,.|x(1 Q- 1),9) = fx; (xi

be found in Zacks (1971, p.41) and Lehmann and Casella (1998, p.16). For a density function gx (x) for X,

its it support is defined by the set
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S(gx)={x;gx(x)>0}.
Further, for a conditional density function fX (x’v) of X given , its support is defined by the set
S(fX|v) = {x;fx(xlv) > O}.

Note that the concept of support can also be applied to multivariate densities.
In Bayesian approach, the parameter vector @ can be regarded as a set of given values of random
l . o, . .qe . . . . . . . .
parameters © = (©,,0,,---,0, ) . So, an initial probability distribution called the prior distribution for ® s
required. Let 7T (9) be a prior density and let f @(9 )x (l Ik)) be the corresponding posterior density or post
data density for © given X ( 1 :k). We have the following relation between the prior density and the post data

density:

f@(e‘x(l Zk))hx(l:k)(x(l Zk)) = ﬂ(@)fx(1:k)(x(l :k)l@), (3)

where hX(]:k)(x(l Zk)) denotes the marginal density of X' ‘(l Ik).

Denote by S(E) and S(hx(l;k)) the supports of 7[(9) and hX(l:k)(x(l Zx)), respectively. Let
$(f@|x(1 :k)) be the support off@(G'X(l :k)) for x(l ik) € S(hx(lzk)), and let S(fX(lzk)\Q) be that of
fX(l:k)(x(l Ik)’9) for 8 € §(7). So, from equation (3) we have S(f@lx(l :k)) c S(7), because a
necessary condition for fe(9|X(l :k)) >0 is 71?(9) > 0. Further, from equation (3) we can see that
fx(l:k)(x(lik)|9) =0 is a necessary result if we maintain the assumption that 7(6)>0 for
6e Sc(f@|x(1 Zk)) and x(l Ik) € S(hX(llk)), where SC(fG)IX(l :k)) denotes the complement of
S ( S @IX (l :k)) in§ (713 ) It is unnecessary for a likelihood oriented inference. Thus, we bring the equality

S(7)=8(fo|x(1:k)) 4)

as a fundamental assumption in the present paper. Similarly, we can also assume that § (h X(1:k)) =

S(fx(m)‘@).
Suppose that for a prior density 77(6), the post data density fo (9 |x (1 Ik)) is a proper density in which

Jfo (9|x (1 Ik)) is integrable with respect to @ and satisfies the following condition:

[ (e folOl(1:k))a0 =1. G

Then, from equations (3) and (5) we can obtain the marginal density of X (1 :k) by

hxa:o(x(1 3k)) = js(”)”(e)f)((l:k)(x(l :k)l@)d@. )
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Equation (3) is a fundamental relation in Bayesian inference. It is called the product rule of probability and
is generally regarded as an axiom in probability theory. In Zellner (1988) the product rule was proved from
a viewpoint of information-theoretic approach and was concluded as the Bayesian information processing
rule. It is obvious that equations (5) and (6) are equivalent under the fundamental relation (3). From the

fundamental relation (3), we obtain the post data density by the following equation:

7(6) fxa:0(x(1: £)6)
hxa:o(x(1:k))

fo(6lx(1:k))= : e
which is called Bayes' theorem (see for example Box and Tiao 1973).

Bayes' theorem allows us to continuously update information about © as more observations are
obtained. Now, assume that we have the model density f)((k+ 1:n) (x(k+ l:n)lx(lik),e) forX(k+ l:n)
={ X1, Xisz»--» X, } given x(1:k) and 6. Then, we can obtain the post data density for © given x(1:n)

as

) fq(O\x(ltk))fX(kﬂzn)(X(k +1:n)x(1:k),6)

f@(elx(lzn))_ hX(k+]:n)(x(k+1:n)|x(l:k)) 5 (3)

where Ax(k+1:n) (X(k + lin)’x(lik)) =IS (1) fe(elx(lik))f}((x(k +12n)|x(1:_k),9)d9. The expression
(8) is precisely of the same form as equation (7) except that f@(@}x(lik)), the post data density for © given
x(l : k), plays the role of the prior density for the succeeding observations x(k +1 :n). Obviously, this process
can be repeated times. Thus, Bayes' theorem describes the process of updating the distribution of © as
learning from data, and shows how information about © is continuously modified as new data become
available. Therefore, we call f@(@lx(lz k)) and f@(@lx(l:n)) the initial post data density and the final post
data density for ©, respectively.

From the above observations, we can see that the cruxes of the traditional Bayesian analysis are the
model for observed data and the prior density for the parameters. They are as two inputs for Bayesian
information processing (Zellner 1988), but it may be true that the former should precedes the latter, because
without model there can be no parameters hence there can be no prior. In scientific research, setting up
hypotheses is the main subject for researchers, the model for observed data may be constructed along with

the hypotheses. However, as usual case the construction of priors may be more difficult.

2.2 Motivation

It can be seen from the discussion in the previous subsection that a feature of the traditional Bayesian
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approach is the prior-dependency. It leads to a difficulty in applications of Bayesian inference when the prior
information is unavailable. This difficulty may be fatal for most situations of scientific research and is the
main cause of criticism to Bayesian statistics. As pointed out by Fine (1999), “The Bayesian methodology,
while enjoying good properties (e.g., admissibility and consistency), is peculiar, in that it requires the user to
postulate a prior distribution that is basically as complex as the quantities being inferred, if not more so.”
There are a number of studies on evaluating priors by using model and observed data, e.g., Zellner (1971,
1977, 1991), Bemardo (1979), Akaike (1980), Jaynes (1983), Chuaqui (1991), Berger and Bernardo (1992),
Berger (1994), Li and Vitanyi (1997). Such approaches have provided solutions to mitigate the difficulty in
the traditional Bayesian analysis.

In order to overcome the difficulty of the traditional Bayesian analysis caused by a lack of prior infdr-
mation, a quite different approach to objective Bayesian inference will be introduced in the present paper.
The feature of this new approach is that it is free of dependence on a prior distribution. Thus, we call
Bayesian inference based on this approach the prior-free inference. An outline of this approach is shown in
Jiang (2000) by the name of self-concluding inference, and it was further developed in Jiang (2002). The
key idea of the prior-free inference is as follows. The presupposition of the prior-free inference is that we have
a model density for the observed data given parameters. As the first step of the procedure, we derive an
initial post data density f@(O’x(l :k)) of © given x(l :k), from the given model density for X(l :k)
directly. Then, in the second step we apply fo (6|x(1 :k)) as the prior density for the observations of the

remaining sample X (k+ 1 :n) to obtain the final post data density f@(@lx(l :n)) by using Bayes theorem.

3. Prior-free Bayesian inference
3.1 Probability integral transformations

First of all, we define a set of probability integral transformations as

0,(xx(1:i-1),8) = [ fi,(t]x(1:i-1).0) e )

for i =1,2,...,k. Obviously, the quantity @,(;,x(1:i — 1),6) defined by equation (9) is a function of both
x(1:k) and 0. Here, we consider the situation that 0 is fixed. So, when x(1:i - 1) is also given,
9, (xi ) x(l - 1),9) becomes a cumulative distribution function for the model density of X, given x(l - 1).

It is a function of X; only and we denote it by
®, = 0,(x)=0,(x,x(1:i-1),6) (15-1)9 (10)

fori =1,2,...,k. When the value of x; in equation (10) is replaced with the corresponding random quantity
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X, fori=1,2,...,k, aset of random variables, say W, = CO,(X,-) (i = l,2,...,k), can be defined.
Let S(fX,-'x(l:i—l),Q) be the support of fX,-(x,-‘x(lti—l),e) for i=1,2,...,k. The following

assumption will be required and can be satisfied for most continuous random variables.

(A1) Given x(l N 1), the conditional model density in(X,-|x(l:i— 1),9) is a continuous function of
0 S(n) and x, € S(fx,[x(1:i-1),8) fori =1,2,...,k.

Then the following fact can be verified under the assumption Al. When x(l i 1) and @ are fixed, the
support of the density fm(a)i‘w(lli— 1),9) for W, given 60(1 - 1) = {w, N ..,(DH} and 0 is [0, 1] for
i=1,2,...,k Hence, for x,€ S(f)(l.lx(lzi— 1),9), we have

90, _ x(1:i-1),0)>0 (i=12,....k). (11)

u

in(xi

Thus, equation (10) is a one-to-one transformation from S(f)(i‘x(l Q- 1),9) to [0, 1] fori=1,2,...,k.

Therefore, under the assumption A1 we have

Fille15i-1)0)= fofol1si-1).0) 521, a2

i

. ow, o,
for x; € S(inlx(l: i— 1),9) andi=1,2,...,k, where Ichl denotes the absolute value of —a-x—’

The following lemmas and corollary are easily proved.

Lemma 1. Under the assumption A1, the density fm(a)i \(D(l - 1),9) for W given 60(1 - 1) and

0 is as
fm(wi\w(lzi—l),9)=l, b)ie (o, 1] (13)

fori=12,...,k.

Lemma 2. Under the assumption Al, we have

k

; fX(l:k)(x(l 2k)|9) — H‘%C;)—'|

i=1 i
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Corollary 1. Under the assumption A1, the joint density for W(l Zk) = {VK, W,,..., Wk} given O is as

follows:
Swap(o(1:k)e)=1.

3.2 Definition of inferential functions

Here, we consider the property of the probability integral transformations for a set of given observations
x(l : k). In this case, the quantity (p,.(x,. , x(l - 1),9) defined by equation (9) becomes a function of @ only
fori =1,2,...,k. It is expressed by

2= 2(0)= 0.5 x(1:i- D O)sin = (+(10 )y (=1200k) (19
Further, when 6 is replaced with ©, a set of random variables, say

z=(2,,2,,....2,) =(2,(8),%(®)....,2,(0)), (15)

is newly defined. The functions defined by equation (15) together with equation (14) are important for the
procedure of prior-free inference, we call them the inferential functions.
Let fz(zlx(lt k)) be a post data density for Z given x(l:k) ,andlet § ( fz‘x(ltk)) denote its support. The

inferential functions can be regarded as a set of transformations from § (7r) to § (fz!x(l: k)) with

Jz, ) (16)

06,
being the Jacobian matrix. Further, when both x(l i ) and @ are given z, is the cumulative probability, thus
we can see that S(fZ,x(lik)) C [0, 1]1X[0, 1]1X---Xx]o0, 1].

For the usual case that § (n’ ) is not empty, we call the inferential functions are informative under the

I

observations x( 1: k) if they satisfy the following assumptions:

(A2) The partial differential, -é?i, is a continuous function of @ at all points of § (‘7t ) fori,j=1,2,...,k.

0z

(A3) The Jacobian matrix defined by equation (16) is a nonsingular matrix at all points of § (ﬂ)

If the inferential functions are informative, then they play the role of one-to-one transformations between

S (7[) and § ( ﬁ’x(l: k)) Hence they have a property shown by the following lemma.
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Lemma 3. If the inferential functions are informative, then the quantity defined by
A= g ldet()|d0 | a7

satisfies the inequality 0 < A <1, where det(J ) denotes the determinant of the Jacobian matrix J defined by

equation (16), and ldet(J )‘ does its absolute value.

Proof. Under the assumptions A2 and A3, we have

2= [ st

from equation (17). Thus, the proof is completed from the fact that S(fle(lik)) c [0, 11X[0, 1]X---X
(o, 11.

It is important that if the inferential functions are informative under x(l : k) , then the initial post data
density fg (H‘X(llk)) for © given x(l:k) can be defined in terms of the initial post data density
F2(2]x(1: k) for Z by

So(Olx(1:k)) = f2(2Ax(1:k))|det()]. (18)

Thus, we can determine fg (9|x(1 : k)) through fZ(Z|X(1 2 k))

3.3 Determination of initial post data density

In this subsection, we show how to determine the initial post data density fZ(le(l : k)) for Z, or
equivalently the initial post data density fg (9’)6(1 : k)) for @, by utilizing an information-theoretic
approach.

Let s(x) and t(x) be two kinds of densities for X, the Kullback-Leibler information of S(x) with respect

to t(x) is defined by

#(x)

Following Kullback (1959), a necessary condition (but not sufficient) to guarantee the finiteness of /x; (S; t)

I (s;0) = jln{fq(i)} s(x)dx. | (19

is that the probability measures defined on s(x) and t(x) are absolutely continuous with respect to one
another. Further, for the same purpose it is also required that both the densities S(x) and t(x) are proper, that

is, J-s(x)dx =1 and It(x)dx =1. It is well-known that IKL(s;t) >0 and IKL(s;t) =0 if and only if
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t(x) = s(x) almost everywhere. So, {x; (S;t) is a functional that measures the “distance” between S(x) and
t(x). That is, [x; (s; t) is a measure to evaluate how t(x) is divergent from s(x) in which S(x) is regarded
as the “standard density” . Note that the Kullback-Leibler information can also be defined for multivariate
densities.

Lindley (1956) utilized the Kullback-Leibler information in Bayesian inference in order to introduce
his criterion functional. By the notation of the present paper, a kind of Lindley’s criterion functional is as
follows:

f@(9|x(1:k))}

Fi(n)= IS(”)X Shxa:0) ln{ 71'(9)

X fo(x(1: %)) Ay (x(1:k))d0dx(1: k) (20)

which measures the missing information about the parameters @ under the condition that the model density
/i X(l;k)(x (l :k)l@) is given. Bernardo (1979) developed his reference prior procedure that derives a prior
density as a solution to maximizing F} (x). In Bernardo (1979), such prior density is regarded as a prior that
describes vague initial information about 6.

Obviously, Lindley’s criterion functional can be rewritten as follows:

) So Ox(1:k))hyq.p(x(1:4))
Fie = st 60| g pfai0)

X fo(BP(1:k)) Py 1.0(*(1:k))dOdx(1: k).

So, it is obvious that

FL(”):IKL(S;t) (21

by putting
s(x(1:k).0) = fo(Blx(1:6) i (x(1: ), 22)
t(x(1:k),0) = (0)hx(x(1: k). ' | (23)

As shown in equations (22) and (23), S(x(l:k),@) denotes the joint density of X (1: k) and O under the
assumption that X' ( 1: k) and © are correlated, and t(x, y) denotes another joint density under the assumption
that X (1: k) and © are independent of each other. That is, Lindley's criterion functional measures the
distance between S(x(l:k),@) and t(x(l: k),@) by regarding S(x(l:k),@) as the standard density.

Lindley (1956) concluded that F’ L(ﬂ:) is as a concave functional of 75(9) By against, we have the
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following theorem.
Theorem 1. For given model density fy(;:x )(x(l : k)[@), if the initial post data density f@(@lx(lzk))

defined by equation (7) with a fixed prior density 7 (0) eSS (71:) being a continuous function of 6, then under

the assumptions A1 Lindley’s criterion functional defined by (20) equals zero. That is, F) (71') =0.
Before proving Theorem 1, we give the following lemma.
Lemma 4. Under the conditions of Theorem 1, we have

' js(ﬁ)XS(hx(l:m)ﬁa(elx(l ) fx i) (1 K)|O)x(1: e)d = 1. (24)

Proof. From the equations (6), (7) and Lemma 2, we have

-[S(F)XS(hx(uk))f@(9|x(l ) fxrea) (R(1: k)01 (1: k)d0

frga (¥ 1k)|9 ﬁl CA P

hX(l:k) 1:1’ X ‘

hx(: k)(X(lik))

_j J[.[g( )fX(l k) x(l k)‘@) ( )de]da)(l:k)

- JS(”)XS(hX(I:k))

by (x(1:k))
= [+ [do(1:6)=

which completes the proof.

Proof of Theorem 1. From the properties of the Kullback-Leibler information and equation (21), the

following inequality is straightforward:

F,(m)=0. (25)

On the other hand, by using Bayes' theorem and Jensen’s inequality we have
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F ()= jS(ﬂ)XS(hX(I:k)) In %ﬂ frau¥(1:k)8)m(6)dx(1:k)d6

=In js(n)xs(hx(l:k))(i)(c—l)k)fk(l k)( (l:k)|9)7t(9)dX(lik)d9

= 1n( js(n)xs(hx(l:k))@(elx(l:k))fx<1:k>(x(1:k)l9)dx(1:k)d9)-

Further, by applying Lemma 4 to the above inequality we obtain
F,(m)<0. (26)

By combining inequality (25) with inequality (26), we have F, (ﬂ) =0, which completes the proof of

Theorem 1.

Theorem 1 implies that it may be difficult to specify a prior as a solution to maximization of Lindley's
criterion functional. It prompts us to utilize the following newly-introduced criterion functional to determine

an initial post data density:

F(fy)= j’ G Shx(i) ln{f@—w%}n(e)hx( 10(x(1:k))d0dx(1: k). @7

When we define the Kullback-Leibler information of 7r(9) with respect to fg (Glx(llk)) for given x(l:k)

by

7(6)
0)de, 28
L (73 folx(1:4)) JS(zr) { (O1x(1:4)) 7(6) (28)
the criterion functional /' ( fe) can be expressed as follows

F(fo)= JS(hX(l:k)) L, (705 folx(1:k)) Puxr: i) (x(1: k) )l (1:k). (29)

That is, our newly-introduced criterion functional is the expected information of 71:(9) with respect to
f@(()‘x(l:k)).

Perhaps, the intention to specify a prior by maximizing the Lindley’s criterion functional is to make
inference by using the traditional Bayesian approach with the most non-informative prior. Contrastively, the

intention to obtain an initial post data density by maximizing our newly-introduced criterion functional is that
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we want to make inference by using the information from observations to the maximum for a given model
density. It is easy to show that F’ ( fe) =1, (t;s) under the use of equations (22) and (23). Our criterion
functional F ( fe) measures also the distance between S(x(lz k), 9) and t(x(l: k), 9) by regarding t(x(l: k), 9)
as the standard density. Thus, it can be seen that the greater the value of £ ( fe) the larger the information
about © from x(]: k). Therefore, we determine the post data density f (9) for © given x(l: k) directly by
maximizing our criterion ‘fu\nctional F ( f@).

From equation (18), we can see that the post data densities fq (Q’X(lik)) and fz(ZIJC(IZk)) correspond
with each other for a given model density. So, our criterion functional F' ( f@) is also a functional of
fz(Z‘X(lIk)) and the maximization of F(f ) with respect to fg (9’26(11 k)) will be equivalent to that with
respect to fZ(Z,)C(lik)).

Theorem 2. Under equation (7), if the inferential functions are informative, then the criterion functional

F(fe) is maximized when
fo4x(1:k)) = (30)

for a given model density of X (I:k), where ¢ denotes a constant.

Proof. From equation (28), we have

L5 ol 1:6) = 9 Jo(B)x( 1) ¥)) /%(;7)(:(91):/«)) JolOh{t)e

By applying equation (7), the above equation can be rewritten as

Ly (7 feix(i: k)= jsm In{p(x(1:4),0)}o(x(1:%),6) fo (6]x(1:%)) 26, G1)

where

B (4(1:K))

Sz (x(1:K)B)

For a given model density fx(1.)(x(1:k)|0), if we fix the prior density 7(8), then the marginal density
hx(y(x(1:k)) for X (1:k) is fixed, hence the function (])(x(]: k), 9) in equation (31) is also fixed. Thus,

o(x(1:k),8) =

we can only maximize {y; (71?; f @‘X(ll k)) through the initial post data density fg (G‘X(l : k)) By applying

equation (18) to equation (31), we obtain the following relation:
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Ty (0 fo|x(1:)) = [ In] @(x(1:K).0) 0 x(1:K),6) fo(2lx(1:1) det( /) 6
= .[S(fz(X(I:k)) In{@(x(1:£),6)}0(x(1:4).6) f2(2lx(1:k))tz.

It is obvious that £, (71' 5 Je @‘x(li k)) is maximized when equation (30) holds. Moreover, from equation (29),
we can see that F' ( f@) is maximized as long as {x; (ﬂ,f 9|x(llk)) is maximized. Thus, the theorem is

proved.

Note that the maximizer of the criterion functional defined by equation (27) is free of dependence on a

prior distribution. The following corollary is straightforward from Theorem 2, and equations (17) and (18).

Corollary 2. Under equation (7), if the inferential functions are informative, then the criterion functional

F(fs) is maximized when

_ ldet(s)

Fo(Olx(1:4)) ===, - (2)

for a given model density of X (1: k), where A is defined by equation (17).

4. General procedure

In this section, we give a general procedure for prior-free inference based on the observations
x(l:n)= {x,,xz,...,xn} for the sample X(l:n).

Suppose we can ensure that the inferential functions are informative under x (ltk) by permuting the
observations appropriately. Firstly, we give the post data density Jo (le (lik)) for © given x( 1: k) by using
the equation (32). Then, we utilize fo (Q‘X(II k)) as a prior density for the remaining observations x(k +1 :n)

of the sample, and obtain the final post data density for @ by using equation (8).

5. Concluding remarks

A new approach named by the prior-free inference to Bayesian inference was introduced for develop-
ing objective Bayesian analysis. The feature of this new approach is that it is essentially a Bayesian method
but it may be free of dependence on a prior distribution for unknown parameters. So, this approach does not
only have advantages of the Bayesian approach but also can avoid the difficulties when we have no prior
information.

An important problem is the relation between our prior-free inference and Fisher's fiducial approach.

It can be seen that if a model has a sufficient statistic for a single parameter, they can lead to the same result,
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otherwise our prior-free inference is better than Fisher's fiducial approach. Further, it is well-known that
Fisher's fiducial approach is difficult for the multivariate parameter case.

.Nowadays, most objective Bayesian analysis procedures use Jeffreys prior. However, a number of
objections can be made to the Jeffreys prior, the most important of which is that it depends on the form of the
observed data. Such objection is reasonable, perhaps, because the prior distribution should only represent
the information prior to the observed data, it can not be inﬂuenced by the data. Also, sometimes, the Bayesian
procedure using the Jeffreys prior will violate the Likelihood Principle, and it is difficult to apply Jeffreys’
procedure to the multivariate parameter case. Such difficulties can be overcome by the use of the procedure

proposed in this paper.
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