ログイン
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要
  2. 旭川大学(~2023)
  3. 旭川大学経済学部紀要
  4. 73(2014.3.31)

平均の意味と正確な計算方法に関する浅見 : 調和平均の例解を中心に

https://aulib.repo.nii.ac.jp/records/180
https://aulib.repo.nii.ac.jp/records/180
f38baac6-218b-434e-b5d1-978791354cd4
名前 / ファイル ライセンス アクション
P001-014(張).pdf 平均の意味と正確な計算方法に関する浅見 : 調和平均の例解を中心に (790.1 kB)
license.icon
Item type [ELS]紀要論文 / Departmental Bulletin Paper(1)
公開日 2017-01-27
タイトル
タイトル 平均の意味と正確な計算方法に関する浅見 : 調和平均の例解を中心に
言語 ja
タイトル
タイトル Discussion on Meaning and Calculation Method of the Mean Through the Illustration of the Harmonic Mean
言語 en
タイトル
タイトル ヘイキン ノ イミ ト セイカク ナ ケイサン ホウホウ ニ カンスル センケン : チョウワ ヘイキン ノ レイカイ オ チュウシン ニ
言語 ja-Kana
言語
言語 jpn
キーワード
言語 ja
主題Scheme Other
主題 調和平均
キーワード
言語 ja
主題Scheme Other
主題 算術平均
キーワード
言語 ja
主題Scheme Other
主題 平均速度
キーワード
言語 ja
主題Scheme Other
主題 平均燃費
キーワード
言語 ja
主題Scheme Other
主題 平均粒子径
キーワード
言語 ja
主題Scheme Other
主題 平均人口密度
キーワード
言語 ja
主題Scheme Other
主題 平均購入単価
キーワード
言語 en
主題Scheme Other
主題 harmonic mean
キーワード
言語 en
主題Scheme Other
主題 arithmetic mean
キーワード
言語 en
主題Scheme Other
主題 mean speed
キーワード
言語 en
主題Scheme Other
主題 mean mileage
キーワード
言語 en
主題Scheme Other
主題 mean particle diameter
キーワード
言語 en
主題Scheme Other
主題 mean populution density
キーワード
言語 en
主題Scheme Other
主題 mean purchase unit price
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 張, 興和

× 張, 興和

ja 張, 興和

ja-Kana チョウ, コウワ

Search repository
Zhang, Xinghe

× Zhang, Xinghe

en Zhang, Xinghe

Search repository
記事種別(日)
内容記述タイプ Other
内容記述 論文
記事種別(英)
内容記述タイプ Other
内容記述 Article
抄録(日)
内容記述タイプ Other
内容記述 大学新入生に平均の概念を十分に理解できない人が多数いる事実に鑑みて、調和平均を通じて平均の意味と正確な計算方法を論じた。
最も身近な往復平均速度の例を用いて調和平均、加重調和平均を導出し、その上、調和平均と加重算術平均の一致性を確認した。
「人口密度」の調和平均がその逆数の「一人当たり面積」の算術平均と一致すると同様に、ある指標の調和平均はその指標の逆数の算術平均と一致する関係を示した。
調和平均には、自動車の平均燃費のような、理論的に必ず取らなければならない調和平均と、競技や性能の総合評価のような、要素間のバランス重視のために自主的に取る調和平均がある。
言語 ja
抄録(英)
内容記述タイプ Other
内容記述 In this paper, meaning and calculation method of the mean were discussed through harmonic mean, because there were many freshmen who could not completely understand the concept of mean.
Harmonic mean and weighted harmonic mean were derived, and it was confirmed that harmonic mean is equal to weighted arithmetic mean, by using the most familiar example of mean speed of a round trip.
Harmonic mean of given numbers is equal to arithmetic mean of the reciprocal of the given numbers, the example is that the harmonic mean of “the population density” is equal to the arithmetic mean of “the acreage per person” which is the reciprocal number of the population density.
Two kinds of analyses often used harmonic mean, one is that the analyses target must take the harmonic mean theoretically, such as the mean mileage of the cars. The other one is that the analyses emphasized the balance between the elements, such as the general evaluation of the contest or performance.
言語 en
書誌情報 ja : 旭川大学経済学部紀要
en : The journal of Faculty of Economics Asahikawa University

号 73, p. 1-14, 発行日 2014-03-31
ISSN
収録物識別子タイプ PISSN
収録物識別子 18841481
雑誌書誌ID
収録物識別子タイプ NCID
収録物識別子 AA12396640
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 08:49:57.927377
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3